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Abstract. Much work has been devoted to the problem of finding maximum likelihood estimators for 
the three-parameter Weibull distribution. This problem has not been clearly recognized as a global 
optimization one and most methods from the literature occasionally fail to find a global optimum. 
We develop a global optimization algorithm which uses first order conditions and projection to 
reduce the problem to a univariate optimization one. Bounds on the resulting function and its first 
order derivative are obtained and used in a branch-and-bound scheme. Computational experience is 
reported. It is also shown that the solution method we propose can be extended to the case of right 
censored samples. 
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1. In troduct ion  

The Weibull distribution is extensively used in science and engineering, mainly to 
model behavior of humans, materials or systems increasingly subject to failure over 
time. Indeed, a survey of Kotz and Johnson [14] ranks the Weibull distribution as the 
third most used one in the statistical literature. Consequently, much work has been 
devoted to the problem of finding maximum likelihood estimators for the three- 
parameter Weibull distribution (when there are only two parameters, the problem 
is easy). Such maximum likelihood estimators have several desirable properties, 
recalled by Zanakis and Kyparisis [32]: consistency, asymptotic normality and 
asymptotic efficiency for large samples under fairly general assumptions. 

Methods to find maximum likelihood estimators for the three-parameter Weibull 
distribution either consist in: (i) direct maximization of the likelihood or log- 
likelihood function or, (ii) determination of solutions of the first-order conditions 
for the log-likelihood function. Nonlinear programming and heuristic pattern search 
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techniques applied by Zanakis [30, 31] pertain to class (i), the false position method 
used by Hatter [10] and the modified quasi-linearization method of Wingo [28, 29] 
belong to class (ii). These and other methods are discussed in detail in the surveys of 
Zanakis and Kyparisis [32], and Panchang and Gupta [21]. The latter authors also 
discuss difficulties encountered by users of these various estimation procedures: 
there may be no interior stationary point, convergence may be to a saddle point or 
to a local maximum which is not a global one or even to a local minimum. 

Such difficulties are typically those which are encountered when a method of 
optimization which only guarantees finding a local optimum is applied to a global 
optimization problem. Panchang and Gupta [21] recommend a palliative, already 
outlined by Lawless [15]: apply a grid search on the values of the location parameter 
(see next section) and solve each time the easy resulting two-parameter estimation 
problem. As no estimate of the slope of the implicit function considered is provided 
there is no guarantee to reach a point with an e-optimal value, i.e., a point whose 
value differs from the optimal one by less than e. Moreover as the behaviour of this 
function between evaluation points is unknown there is no guarantee that a solution 
close to the optimum one is obtained. Finally this procedure may be inordinately 
long, particularly if high precision is desired for the values of the parameters. 

In this paper we propose a method for finding maximum likelihood parameters 
for the three-parameter Weibull distribution which guarantees that they are within 
any prescribed distance of the global optimum. It is based on using decomposition 
(or projection) to reduce the problem to a one-dimensional one and then exploiting 
bounds on the values of the log-likelihood function and its first order derivative in 
the remaining variable to curtail the search, within a branch-and-bound scheme. 

The paper is organized as follows. The parameter estimation problem is stated 
in the next section. Some properties are given in Section 3. A decomposition 
scheme and an algorithm are described in Section 4. Extension to the case of right- 
censored samples and computational experience for test samples from the literature 
are presented in Section 5. 

2. Problem Statement 

We consider the three-parameter Weibull distribution, whose cumulative distribu- 
tion function can be written: 

F(x; u,v,w)= 1 - exp( - ( x  - u)W) 
v 

where u is the location parameter, v is the scale parameter and w is the shape 
parameter. 

Given a sample of N (_> 1) observations Xl,X2, ...,XN, a common way of 
estimating the parameters u, v and w is to maximize the log-likelihood function: 
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N N 

V j = l  j = l  (1) 
1 N 

- N l n v - -  ~ - ~ ( x j - u )  if w =  1 
V ~--~. 

subject to the following constraints: 

0_< u _< xj j = 1 ,2 , . . . ,N  

v > 0  

w > 0 .  

Note that L is defined by a separate expression at w = 1 as the term (w - 
1) N ~ j = l  ln(xj - u) is undefined, even by continuity, when w goes to 1 and 
u goes to minj=l ..... N xj. For w ~ 1, the function L takes its values on ~ = 

U { - e c ,  +oc},  by continuity when u goes to minj=l,2 ..... N xj. However, if we 
assume 0 < u < minj=l,2 ..... N xj, the log-likelihood function is well defined 
(again taking its values on ~) by the expression: 

N N 

V j = l  j = l  

forv  > 0 a n d w  > 0. 
Solution of this problem is easy if w < 1. Indeed the first partial derivative of 

L with respect to u, 

OL w N N 1 
O - - ~ ( U , V , W ) =  - -  Z ( X j - - ? s  - 1) Z x j -  u 

V j = l  j = l  

is strictly positive for 0 _< u < mini=l,2 ..... N xj and v > 0. Hence the function 
L increases monotonously with respect to u and goes to +ec  when u goes to 
m i n j = l , 2  ..... N Xj. Such an optimal solution in which L(u, v, w) takes an infinite 
value and u only depends on the smallest observation of the sample does not appear 
to be realistic. In such a case, using other estimators such as modified moment ones 
may be preferable (see, e.g., Cohen, Whitten and Ding [5]). In this paper we only 
consider maximum log-likelihood estimators and therefore assume from now on 
that w > 1. (An optimal value of w* = 1 will thus be an indication that alternative 
estimators should be considered.) 

Finding parameters is usually achieved by solving the following log-likelihood 
equations: 

OL OL ( u , v , w ) = O ,  OL ( u , v , w ) = O .  
Ou ( u, v, w) = O, Ov Ow 

However, as discussed above, solving these equations may only provide a local 
maximum, or even a solution for which the objective function is locally minimum 
with respect to variable u. 
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3. Properties 

We now present properties which will be used in the decomposition scheme embed- 
ded in the exact algorithm. One of the most significant results of this section is 
the existence of a value u0 E [0, min/=l,2,...,N xj] on the left of which there is no 
local optimum. The two first properties are known (McCool [ 18]; Rockette, Antle 
and Klimko [27]) as local optimality conditions. When necessary we complete the 
proofs to show they are in fact global optimality conditions. 

Maximization of the log-likelihood function L (as defined by (1)) can be 
expressed as: 

max L(u, v, w) 

subject to : u E U 
v E V (3) 

w E W  

where U = [0, mini=l,2 ..... N xj], V =]0, +co[ and W = [1, +oc[. 
If we first project the (u, v, w)-space on the (u, w)-space (Geoffrion [7]), this 

problem becomes: 

max L*(u, w) 

subject to : u E U 

w E W  

where: 

L*(u, w) = max L(u, v, w) . (4) 
vEV 

It is easy to obtain an analytical expression for the exact solution of the inner 
optimization problem (4). 

PROPOSITION 1. (Rockette, Antle and Klirnko [27].) For given u E U and 
w E W, let ~3 = ~N=I (xj -- u)~/N.  Then: 

Vu E U Vw E W max L(u, v, w) = L(u, ~, w) .  
vEV 

Proof. We consider the maximization of function L with respect to v, the other 
variables being held fixed. The first order condition can be stated as: 

OL N 1 N 
O v  ( u ,  v ,  = - -v + ( x j  - = o .  

j = l  

Function OL/Ov is equal to zero at i~ = ~1~= 1 (x i - u)~/N,  positive for v < ~ and 
negative for v > ~. Moreover, ~3 > 0 unless all xj coincide with u, in which case 
~3 = 0 (by continuity on ~). So, assuming at least two sample points are distinct, 
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~3 C V =]0, +or Hence ~3 is the global maximum of the function L with respect 
to v for u and w fixed. [] 

Thus problem (3) can be restated as a problem in the variables u and w only: 

max L*(u,w)  (= L ( u , ~ , w ) )  

subject to : u E U 

w E W .  

(5) 

Projecting now the (u, w)-space on the u-space, problem (5) reduces to the uni- 
variate problem: 

max L**(u).  
uEU 

where: 

L**(u) = m a x  L * ( u , w ) .  (6) 
wEW 

Again it is easy to compute the global solution of the inner problem (6). 

THEOREM 1. Let ~b E W satisfy L*(u, ~) = max~ew L*(u, w). 
I f  O L * / Ow ( O, 1) < 0 then ~b = 1. 
I f  O L*/ Ow (0, 1) >_ 0, then there exists a unique value uo E [0, mini=l,2 ..... N Xj[ 
satisfying OL*/Ow (u, 1) = 0 such that: Vu > uo ~b = 1; Vu <_ uo ~b is equal to 
the unique root of  O L * / Ow ( u, w) = 0 on [1, +or 

Proof. We first consider the case when u = mini=l,2 ..... N xj and then the 
maximization of function L* with respect to w, the variable u being fixed at a value 
in [0, mini=l,2 ..... N x j[ (which allows the use of the analytical expression (2) for 
the log-likelihood function L). 

If u = mini=l,2 ..... N xj then, L(u,  v, w) is equal to - e e  if w 7~ 1, and 
L(u,  v, w) E IR if w = 1. Since we maximize L(u,  v, w), it follows that tb = 1 
when u = mini=l,2 ..... N xj.  

If u E [0, mini=l,2 ..... U xj[, computing ~b leads to examine the root(s), if they 
exist, of: 

OL* N N 
N ( E  e~~ 1 -  wzj))  = 0  (7) 

j = l  

where 

1 N 
zj = ln(xj - u ) -  ~ y ~  ln(xj - u ) .  

j = l  
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N ewzj As w )-~4=1 is never equal to zero, a solution of equation (7), if it exists, 
is a solution of: 

N 

-  zj) = 0 .  (8) 
j=l 

We now show that this last equation has at most one solution. The derivative of the 
left-hand side of (8) with respect to w is equal to: 

N 
--W Z 2 wz~ z 3 e ~ (9) 

j = l  

which is non-positive for w > 1. As the left-hand side of (8) is a continuous 
function, going to - o c  when w goes to + ~ ,  equation (9) has exactly one root if 
and only if there exists a value zj such that: 

N 

C~(1 - z j )  > 0 (10) 
j = l  

or equivalently, if there exists u such that: 

OL* 
Ow (u, 1) >_ O. (11) 

The left-hand side of (10) can be rewritten: 

N 

j=l 

or equivalently, 

1 

N 
~ ~ ln(x~-~) 

j----I 
e 

where: 

N 

- l  ~ ln(xj-u) 1 N 
j = i  (1 - ln(xj - u ) +  ~ ~ I n ( x / -  u)) 

j----1 

N N 1 
l n ( x j -  u ) ) .  •(u) = ~ (x s - u) (1 - l n ( x / -  u) + 

j = l  j=l 

It follows that condition (10) is equivalent to: 

there exists u such that ~(u)  _> 0 .  

Let us examine the roots of qp on [0, mini=l,2 ..... N xj [. After simplification, the first 
order derivative of ~(u)  can be written: 
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1 N N 1 
~' (u)  = - ~ ~ (xj - u) ~E ~ _ u '  

j = l  j = l  

which is non-positive for all u E [0, mini=l,2 ..... N Xj[. 
Since qo is a continuous non-increasing function on [0, mini=l,2 ..... N xj[ and 

q p ( u )  g o e s  t o  - - o o  a s  u g o e s  t o  m i n i = l ,  2 ..... N xj,  1 there exists a unique value uo 
satisfyingqo(u) = 0 on [0, mini=l,2 ..... N x j [ i f a n d  only ifqo(0) __k 0, or equivalently 
OL*/Ow (0, l )  >_ 0 using inequality (1i).  

Therefore: 

OL* 
(a) if  ~ (0, l )  < O, inequality (10) is never satisfied. 

It follows that: Vu E U Vw E W OL*/Ow (u, w) < 0 and hence, /b = 1. 

(b) if ~w0L* (0, 1) _> 0, there exists uo E [0, j=l,2min ..... N xj[ such that 

OL* 
(i) Vu E [0, uo[ Ow (u, 1) >_ 0 

(ii) V u E [ u o ,  min xj] O L * . u  1 ) < 0  
j=1,2 ..... N ~ (  ' " 

This implies that, in case (a): Vw E W OL*/Ow (u, w) < 0, and hence, zb = 1. 
In case (b), there exists t~ E W such that: 

Vw E [1 ,~[  OL* 
Ow (u, w) > 0 

OL* ^ 
v,, e [o, uo[ ~ (u, w) = o 

Vw E]~, +oo[ 0Z* -g~- (u,w) < 0.  

Hence ~b is a maximum of L*(u, w) for fixed u. [] 

1 ~(u) can be rewritten as ln(x~ - u) ~l(u) + ~2(u) where: 

x k = nfin x j , 
j=  1,2,...,N 

N 

~1(~1 - -  N--  1 1 E ( x J  --u), 
N ( ~ - u ) + N  

j=l  
jCk 

and 

j = l  j=l  j=l 
j~k jC:k 

Assuming not all observation points are equal, we deduce ~l(Xk) > 0, hence lim~_~ k ln(x~ - 
u) ~1 (u) = -c~. Since 0 _< l i m ~  k ~2(u) < + ~ ,  we obtain l i m , ~  k ~(u) = -c~. 
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It follows, from Theorem 1, that: 

PROPOSITION 2. Let Co E W satisfying L*(u, Co) = maxwew L*(u, w). 
Define uo as the root of  O L * / Ow ( u, 1) = 0 if O L * / Ow ( O, 1) > 0, and uo = 0 
otherwise. Then, 

Vu E [0, uo] 

Vu E]uo, min xj] L**(u) = L*(u, 1) i.e., Co = 1. 
j=I ,2 , . . . ,N 

We now show that the maximization of L**(u) is straightforward when u E 
]U0, n ' t in j= l ,2  ..... U x j ] :  

L**(u) = L*(u, Co) 
OL* 

where Co is the root of ~ (u, w) = 0 

PROPOSITION 3. 

max L**(u) = L**( min x j ) .  
j =  1,2,...,N uE]uo, n~n x j] 

3= 1,2,...,N 

Proof When u0 < u < minj=l,2 ..... N xj, the expression of L**(u) simplifies 

to L*(u, 1) = U l n N -  N -  N ln(~N=l (x j - -  u)) ,  and its first derivative is e q u a l -  

to N2/(~jU=, (xj -- u)).  As L** is non-decreasing for u0 < u < mini=l,2 ..... N xj,  

and is continuous to the left of minj=l,2 ..... N x j, the result follows. [] 

We now provide someadditional properties which will be useful to design an algo- 
rithm which outputs e-optimal parameter values. 

PROPOSITION 4. (Rockette, Antle and Klimko [27].) The implicit function Co(u) 
defined as the solution of O L * / Ow ( u, w) = 0 is non-increasing. 

Proof. See [27]. [] 

PROPOSITION 5. The implicit function Co(u) is of  class C l on an open set f~ 
containing [0, u0]. 

Proof. We proved in Theorem 1 that: 

OL* 
V~ E [0, u0] 3!Co E W such that ~ (g, Co) = 0 ,  

or equivalently, such that: 
N 

f(~,z~) = 0,  where f ( u , w ) =  ~ eWZJ(1-wzj )  
j = l  

1 N 
and zj = ln(xj - u) - ~ ~ ln(xj - u ) .  

j = l  
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The function f is clearly of class C l on U • W and for every (u, w) E U • W, 
Of / O w ( u ,  w)  = - w  E~=I _2~,z~ ~j~ ~ # 0. 

Hence, the basic theorem on implicit functions (see Arnaudies and Fraysse [2], 
p. 221) applied for every fi E [0, u0], states that there exists a neighborhood Va 
of fi and a function wa of class C 1 on Va, such that @ = w~(~) and Vu E V a  

The implicit functions theorem also states that if there are two implicit functions 
w~  and wa: taking the same value at some point in V,~I N V~:, then the two functions 
are the same (unicity property, Amandies and Fraysse [2], p. 221). Therefore, if 
we set ~ = (-J~e[O,~o] Va, the function @ defined by ~b(fi) = @ is of class C 1 on 
which contains [0, u0]. 0 

PROPOSITION 6. The function ~3(u, w) = EN=I (xj - u)~~ is non-increasing 
with respect to u and convex with respect to w on U • W.  

Proof. When 0 < u < minj=l,2 ..... N xj and w > 1, the first derivative of 
with respect to u, is equal to: 

N 0___~ (U, W) ---- ~N 1 E W(Xj -- U) (w-l)  
Ou j = l  

which is a non-positive function, and the second derivative of ~ with respect to w, 
is equal to: 

Oq2V 1 N 
Ow 2 (u, w) = ~ ~ (xj - u) w ln2(xj - u ) ,  

j----1 

which is a non-negative function. As ~3 is continuous on U x W, the result follows.O 

PROPOSITION 7. There exists an open set f~ such that: 

(i) [0, u0] C f~ 

(ii) L** is of  class C 1 on f~. 

Proof. We proved in Proposition 2 that: 

Vu C [0, uo] L** = L*(u, zb) 

where zb is the implicit function defined on [0, u0] by f ( u ,  ~b(u)) = O. 

We proved in Proposition 5 that there exists an open set f~l containing [0, uo] 
and such that zb is of class C 1 on ~ I. 

Moreover, the function L* defined explicitly by 

N N 
L*(u ,w)  = N l n ( N w ) -  N - N In ~ (xj  - u) TM + ( w -  1) y ~  ln(xj - u) 

j = l  j= l  
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is of class CI for u < mini=l,2 ..... N xj and w > 1. 
Hence, if we denote by f~, the open set fhN]-c~,  min xj[, the function L**, as 

the composition of the two functions L* and ~b, of class C 1 respectively on f~ x W 
and on 9t, is also of class C 1 on fL [] 

4. An Exact Algorithm 

We present in this section an algorithm, called MLEW, to find the maximum log- 
likelihood estimators for the three-parameter Weibull distribution. As shown in 
Section 3, this problem reduces to maximization of the function L** where: 

L**(u) = max L*(u, w) = L*(u, &) = max L(u, v, ~o) = L(u, ~, ~b). 
wEW vEV 

The proposed algorithm is an outer-approximation method, based on Piyavskii's 
algorithm [23, 24]. A piecewise linear upper-bounding function L** of L** is 
constructed and updated at each iteration. The new evaluation point Pk at iteration 
k corresponds to the maximum of L** at that iteration. This last function is updated 
using lower and upper bounds K L and K v on the slope of L**(u) first between the 

L on the left of Pk (or 0 if none exists) and Pk, and then closest evaluation point u k 
between pk and the closest evaluation point u~ on the right ofpk (which, due to the 
initial steps always exists, see below). These bounds are obtained by using results 
of Section 3 and range inclusion techniques from interval analysis (Moore [20], 
Ratschek and Rokne [25, 26]). The algorithm stops when the difference between 
the maximum of function L** and the incumbent value Lop~ does not exceed a 
given tolerance e. An alternate stopping rule, described later, considers the optimal 
location of parameters u, v and w. 

Thus, we first present, in Subsection 4.1, an algorithm for finding an e-optimal 
value for L. Extensions for finding e-optimal values for the parameters are dis- 
cussed in Subsection 4.2. 

4.1. FINDING AN g-OPTIMAL VALUE FOR L 

As shown by Horst and Tuy ([13, 12]) for general outer-approximation methods 
in global optimization, algorithm MLEW can also be viewed as a branch-and- 
bound method. Branching is made by separating the interval [u~, u U] into two 
subintervals [u~, Pk] and [Pk, u~] which have only point Pk in common. Bounding 

L U L(u ) on the interval [uk, u k ]is done by finding the intersection point (Pk, L** (Pk) ) 

of lines with slopes K U and /@ going through the points (u~,L**(u~)) and 

(uU, L**(uU)) respectively (see Figure 1). The point (pk, L**(pk)) is a local 
maximum of the current upper bounding function and is called a peakpoint. Each 
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L k = [ (Pk)' 

x3 -,.x 

I I 
I I 
I I 
I I 

uL ~ uL U k a Pa Pk uU= L U = a Ub Pb I l k = r i b  

Fig. 1. Illustration of MLEW algorithm. 

u 

subproblem is characterized by the quintuplet (Pk, Lk, [u~, U L U u k ], where Lk ,  La ) 
Lk = L**(pk), Lk L = L**(u L) and L U = L**(uU). Subproblems are stored in a 
list, accessed through an adequate data structure for the operations MAX, MIN, 
INSERT and DELETE, i.e., a double-ended priority queue such as a min-max heap 
(see Atkinson et al. [3], Hasham and Sack [11]). 

Formal roles of the algorithm are given next, followed by their justification, 
proof of the algorithm's finite e-convergence and estimation of its rate of conver- 
gence. 

ALGORITHM MLEW 
1. Initialization of the location, scale and shape parameters .  Sufficient condi- 
t ion for a corner  solution. 

Uopt ~ rain xj  ; 
j=I ,2, . . . ,N 

Wop  t +-- 1 ; 

1 N 
v o .  ( x j  - u o . ) ;  

j----1 

Lopt ~ - N  lnvopr - N ; 

If  0 / :  (0, l )  < 0 then 
Ow 

stop: (uopt, vopt, wopt) is an optimal solution with value Lopt 

Endif  ; 
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OL*(u, 1)=Oon[O, min xj[" uo ~ root of ~ j=l,2,...,Y ' 

2. Initialization of the upper bounding function. 

[K L, K U] . -  interval containing the range of the slope of L**(u) for 0 _< u _< uo; 

Ul +--0; 

L U OL* (0, w) for w > 1 ; [K~, K~o ] ~ interval containing the range of the slope of -~w 

Kw +- max {IK l, Ig l) ; 

W l  +"- root of ~0L* (0, w) = 0 over [1, +oo[ with a precision K~  2e ; 

1 N 
W l  . 

V l  , 

j = l  

If L(ul, Vl, Wl > Lopt then 

Lop~ *-  L ( U l , V l , W l )  ; 

(Uopt, Vopt, Wopt) 4--- (Ul, Vl, WI) 

Endif  ; 

If  KUo <_ 0 or Ko L _> 0 then 

stop: (uop~, Vop~, wopt) is an optimal solution with value L opt 
Endff ; 
L~*(u) ~- min {L**(O)+ KUu, L**(uo)+ K L ( u -  uo)} f o r O <  u < u0;  

P2 *'- arg max Li*(u) ;  
ue[O,uo] 

t,2 L *(p2) ; 
/:'2 = (P2, L2, [0, uo], L**(0), L**(uo))in list ; Insert 

k .--- 2 ; 

3. Optimality (e-optimal value) and first range reduction tests. 

Extract from list the subproblem Pl +- (Pl, Ll, [ul L, uT], L**( @ ), L**(uU) ) for 

which L1 = max Li ; 
i 

OL* 
[K~, If~] ~ interval containing the range of the slope of ~ (Pt, w) for w > 1 ; 

OL* e . 
wt ~ root of ~ (Pt, w) = 0 over [1, + ~ [  with a precision K~  ~ , 

1 N 

j = l  
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I f  L(pt, vl, wl) > Lopt then 

Lopt +-- L(pl,  vl, wl) ; 

Vow,, +-- (pz ,  v l ,  ; 

delete from list all subproblems P~ with L~ _< Lopt 

Endi f  ; 

I f  Lz - Lopt <_ ~ then 

stop: Lopt is an e-optimal value 

Endi f  ; 

4. Branching (new subproblems) and monotonicity range reduction test. 
~ + [ z ,pz ] ;  

For i = a, b do 

[K L, K U] +-- interval containing the range of the slope of L** on [ui, ~i] ; 

if ( K  i < 0 and K U >_ 0)then 

Lk+l(u)  +- min {L**(~)  + K V ( u  - ui) , L**(fii) + K L ( u  - ui)} ; 

Pk+l ~ arg max Lk+l(u)  ; 

Lk+l ~ k+l(Pk+l) ,  

Pk+l = (Pk+t,-Lk+l, [u~, fii],L**(ui),L**(~ti) ) ; insert in list 

k + - - k + l  

endif 

End For ; 

Return to Step 3. 

Step 1 of algorithm MLEW computes, for the largest possible value of u, i.e., 
mini=l,2 ..... N xj ,  the optimal values of the parameters v and w, i.e., + which is 
given in Proposition 1, and zb, which, according to Theorem 1, is equal to 1. It then 
checks if the sufficient condition of Proposition 2 for this point to be optimal is 
satisfied and if it is the case the procedure stops. 

Step 2 first computes u0 (using Newton's method) the largest value of u for 
which zb > 1. According to Proposition 4, the open interval ]u0, mini=l,2 ..... N x j[ 
cannot contain an optimal value for u, and hence is discarded. A subroutine, using 
the natural interval extension of interval arithmetic (see, e.g., Ratschek and Rokne 
[25, 26]), is then used to bound the slope of L**(u) on the interval [0, uo]. This 
subroutine provides an interval [K L, K U] which is an inclusion for the range of 
the derivative of L**(u) over a given interval [a, b]. The upper bounding function 
L**(u) is then initialized as the lower envelope of lines with slopes K U and K L 
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through points (0, L**(0)) and (uo, L**(uo)) respectively. The first subproblem, 

P2, is then obtained by computing the maximum L2 of this upper bounding function 
and its argument P2. 

Current iterations are described from Step 3 onwards: the subproblem with the 

largest upper bound is selected and the function L**(u) = L (u, ~(u, &), ~b(u)) 

evaluated at its peak point. Note that ~b(u) can be computed using, e.g., Newton's 
method as OL*/Ow(pz, w) = 0 has a unique root over [1, +o0[ (see Theorem 
1). If the new evaluation point is better than the incumbent one it replaces it, the 
incumbent value is updated and the list of subproblems trimmed by deleting those 
with an upper bound not larger than the incumbent one (first range reduction test). 
The stopping criterion is then applied: the algorithm ends if the difference between 
the upper bound and the incumbent value is sufficiently small. 

Branching takes place in Step 4, where the current problem is bipartitioned. To 
this effect the corresponding interval of values of u is split at the peak point of 
L**(u) and the range of its derivative is evaluated on each of the subintervals so 
obtained, ff the lower and upper bounds on the derivative of L** (_u) are respectively 
non-positive and non-negative, the upper bounding function L** is updated on 
this subinterval, its maximum and corresponding peak point found and the data 
quintuplet inserted in the list of subproblems. If a lower bound on the derivative 
of L**(u) is positive or an upper bound negative the corresponding subproblem is 
discarded, i.e., not inserted in the list (monotonicity range reduction test). Indeed in 
such a case a globally optimal value for a subproblem can only occur at one of the 
extreme point of the corresponding subinterval (assuming L** to be continuous, 
which has been shown in Proposition 7) and L**(u) has already been evaluated at 
both of these extreme points. 

We now prove finite e-convergence of Algorithm MLEW. 

THEOREM 2. Algorithm MLEW finds an e-optimal value for the log-likelihood 
function L( u, v, w) of the three-parameter Weibull distribution in finite time for 
any given positive constant e. 

Proof. We first show that each step of algorithm MLEW takes a finite time. 
All steps involve only simple calculations except for computation of the root of 
OL*/Ow (u, 1) = 0 in Step 1, of the roots of OL*/Ow (0, w) = 0 in Step 2 and of 
OL* / Ow (Pt, w) = 0 in Step 3. From Theorem 1, the root u0 of OL* / Ow (u, 1) = 0 
is unique; it can be found in finite time, to any desired precision e~, o, by dichotomous 
search. Let u U be an e~,o-optimal overestimate of u0. We eliminate the interval 
] u U , r n i n j = l , 2  ..... N X~[ and go on with the optimization of L** on [0, uU]. From 
Proposition 4, the function zb(u) defined as the solution of OL*/Ow (u, w) = 0 is 
non-increasing, and from Proposition 5, it has a continuous derivative. Therefore 
zb(u) can be found in finite time for fixed u, to any desired precision e~, on w, 
by using Newton's method (or dichotomous search in case of non convergence 
of Newton's method). In order to reach an e/2-optimal value of L**, e~ can be 
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chosen to be equal to eKw/2, where Kw is an upper-bound on the absolute value 
ofOL*/Ow (u, w). 

We next note that while Steps 1 and 2 occur once, Steps 3 and 4 are repeated 
until the stopping condition Ll - Lope _< e /2  holds. At any iteration k, the upper 
bounding function L~* is updated into Lk+ 1 the peak point Pt disappears and is 
replaced by at most two new ones, as one or both of the subintervals obtained may 
be deleted due to the monotonicity test. Therefore we are left with subproblems 
such that K L < 0 and K U > 0 on each interval I~, ~t]. Moreover the width 
of the interval [u_t, ~l] where ~ and fil are evaluation points, respectively to the 
left and the right of peak point Pl is at least (1 /K  U - 1 /KL)e/2  >_ (1 /K  U - 
1 / t (L)e /2  _> e / I (  where K = max { - K  L, K U } (as L**(pl)- Lopt _> e /2  implies 
L**(pt) - max {L**(~),  L**(~l)} > e/Z) if branching is to occur on [~, fit]. 

Therefore, the range of values of u for any subproblem obtained by branching 
on [~,  fit] is at least of width e /K .  Comparing this value with the width of [0, u0] 
shows that the number of iterations of algorithm MLEW is bounded by uo K / e  + 1, 
which is finite for any strictly positive e. 

Due to the precision e~o = eke~2  used to compute zb(u), the resulting error on 
L**(u) does not exceed e/2.  Moreover, as the stopping criterion is performed with 
e/2,  this yields an e-optimal value. [] 

As with other global optimization algorithms, the rate of convergence of algorithm 
MLEW is not large, in the worst case. 

THEOREM 3. Algorithm MLEW has a logarithmic rate of convergence. 
Proof. Consider algorithm MLEW at the n th iteration. Let: 

F* = max L**(u),  
u~[0,u0] 

Lopt -~- m a x  L**(uk), 
k=l,2,...,n 

e n  = - L o p , .  

After n iterations, the upper-bounding function L** has, at most, n - 1 peak points, 
which we callfirst generation peak points. After at most n - 1 additional iterations, 
the highest peak point is not one of these, i.e., it is a second generation one. Let m 
be the iteration at which this is the case for the first time (m < 2n - 1). Let i be 
the iteration at which the peak point selected at iteration m has been obtained. 

The upper bound 

Fro* = L**(pm) = max{L**(pa), L**(pb)} 

where pa and Pb are the peak points obtained when updating L**(u) on [u L, u 7] (see 
Figure 2). Bounds on the slope of L** (u) on the intervals [u L, ui = Pl] and [ui, u U] 
have been used for that purpose. If the less precise bounds defined on [u/L, u 7] had 
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been used instead one would have obtained peak points with ordinates Ya (at the 
intersection of lines F*_ 1 + K U ( u  - ui) and L**(ui) + K L ( u  -- ui)) and Yb (at 
the intersection of lines F*_ 1 + KL(u - ui) and L**(ui) + K U (u - ui), see again 
Figure 2). Then, from elementary geometry 

K U L**ru.~ K L  Fi*- 1 

K ~ -  K~ 

if K~ v + K# < 0 

F*  _< max(L**(ya),L**(yb)) = K U F?_ 1 -- t i  "L i * * ( u i )  

if K~ + K, ~ > 0 

Consider now F ~  - Lr~pt as a function of en; as en does not increase with n, 
r 2 n - 1  < F *  - L~t .  

C 2 n - 1  ---- F ~ n -  1 - ~ o p t  - 

Two cases may arise: 

(i) if L**(ui) > Lio-~ 1 then Liopt = L**(ui) ; 

(ii) if L**(ui) <_ Liop 1 then Liopt = Liopt 1 . 

In case (i), L~t  > Liopt = L**(ui). Setting K sup = max(K U, -K/L) and K inf = 
min(K U, -K~) , -as  F*_, > L**(u 0 one has: 

K~Ul ' K~"I L**(ul) 
- * ~ i -  K L  - L~ 



THE THREE-PARAMETER WEIBULL DISTRIBUTION 389 

< 
~-inf 1- i Ksup F?-I + " ' i  ~opt 

K v _ K L 

( K  sup + K~nf)Liop t 

K U _ K L 

- * - Lo ,) Kg-  (F:_, < 
g sup 

K U _ K L (F[ - -1 -  Lio~t 1) 

< K sup 

_ K u _  K L  e n .  

Similarly, in case (ii), as L ~ t  >_ L~o~) = L**(ui) ,  

Ksup KSUp 
F *  - L ~ t  < K u _  K L  (F;_ 1 -- Liop 1 ) ~ K u  _ K L  en . 

Hence, 
g S u , ,  

e2~-I < g V  _ KL en .  

Moreover, 

Ksup KSUp - K < 1 as i 
g U - g L Ksup + K~ nf 

�9 ~ n  ~ n  
K~nf >- u U : u  L ~ --'uo 

Therefore as doubling the number of iterations decreases the error by a positive 
percentage, algorithm MLEW has a logarithmic rate of convergence. [] 

4.2. FINDING AN e-O~TMAL PARAMETER VECTOR 

In this subsection, we discuss an alternate stopping rule that guarantees the e- 
optimality of the parameter vector. We suppose a tolerance vector (e~,, ev, ew) on 
the parameter vector (u, v, w) is given. We proceed in three steps. First we obtain 
an e~,-optimal value for the location parameter, then an ew-optimal value for the 
shape parameter and finally an Ev-optimai value for the scale parameter. 

Obtaining an e~,-optimal value f o r  the shape parameter  
Algorithm MLEW iteratively reduces the interval [0, minj=l ..... N x j] by dis- 

carding subintervals that cannot contain a globally optimal parameter u*. Let .4 
be the set of indices of active subproblems, i.e., subproblems that have not been 
discarded once an e-optimal value for L** has been reached. The remaining active 
subspace is a union of subintervals: 

U [uL uf]. 
lEA 
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Denote by U L and u U the leftmost and rightmost endpoints of the remaining subin- 
tervals, respectively. If u U - u L _< e~, and e~-optimal value has been reached 
for u. Assuming there is only one global optimum point, after further iterations of 
algorithm MLEW, the condition u U - u L < e~, can be satisfied. Otherwise, one 
could adapt the algorithm of Hansen, Jaumard and Lu [8, 9] for global optimization 
of univariate Lipschitz functions. This algorithm allows the localization of each 
global optimum of such a function within an interval containing only e-optimal 
points, provided any two successive local optima differ in value by at least e. In 
such a case, denote by u L and u U the extreme points of one of the remaining 
intervals. This, however, has not been needed as for all tested samples, algorithm 
MLEW has always provided solutions satisfying the tolerance condition on u. 

Obtain ing  an ev-op t imal  value f o r  the shape  p a r a m e t e r  

It follows from Proposition 4, which states that ~ (u )  is non-increasing, that 
the remaining w-subspace is included in [w L, w U] where w L = Co(u U) and 

w U = ~ ( u L ) .  After the first condition u v - u L < e~ has been fulfilled, algo- 
rithm MLEW will carry on until ( w  u - w L) < e~, is satisfied. 

Obtain ing  an e~o-optimal value  f o r  the scale p a r a m e t e r  

Proposition 6 enables us to find bounds on the remaining v-subspace: as ~ is 
non-increasing with respect to u, the lower bound in v is necessarily reached when 
u is equal to u U and the upper bound when u is equal to u L. Moreover, as ~3 is 
convex with respect to w, the lower bound in v is reached at the minimum of a 
convex function over a closed set, and the upper bound when w is equal to w L or 
w is equal to w U. 

Combining these results, it is easy to deduce the value of the upper bound in v (see 
Figure 3): 

To find the lower bound in v, one first has to check whether the minimum of the 
convex function r U, w )  occurs within the bounds w L and w v or not. This can 
easly be done by computing the first derivative ofv with respect to w at u = u L and 

u = u U. In case the minimum occurs within these bounds, rather than computing 
its exact value, which is too time consuming for a stopping test performed at each 
iteration, algorithm MLEW computes a linear approximation of this minimum. 
The exact value or the approximation of the lower bound in v is obtained by the 
following algorithm: 

If Ov ( uU, wL ) > 0 then 
Ow 

v L u,  w z )  

else 
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v(u.w) 

: iiiiiiitiiii 
u 

Fig. 3. Shape of the implicit function v (u, w) .  

if ~ (u U, w U)  <_ 0 then 

v L v,  w U) 

else 

or C u U w U ~ f v U w L . ~ l l  ,9,J l u U  wL~" ~ 0,~ t u U w L ' ~ . ~ l v U w U ~ t  1 Ov t u U  w U X ~  
v L  e _  \'g--d~ ' J ~ , J~ - - ~  , JJ--~-d~ , J ~ , J~ - ~  , ) ) }  

endif  

Endif 

When the third condition v U - v L < ev is also satisfied, as the two previous 
criteria are still holding, the algorithm stops and the parameter vector provided is 
then (e~,, ev, e~)-optimal. 

5. Experimental Results 

The algorithms described in the previous section are now applied to several samples 
from the literature to illustrate their efficiency. A comparison with the method of 
Panchang and Gupta [21] is also made. Both versions of algorithm MLEW are 
implemented in Fortran 77 and run on a Sun SPARC (with a 16 Mips processor). 
The data are presented in Table I, with their reference in brackets. Table II provides, 
for each sample, the value of the maximum of the log-likelihood function, obtained 
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TABLE I. Test samples of  a Weibull distribution. 

sasnple observations 
1 [27] 3.1 4.6 5.6 6.8 
2 [22] 35.0 34.7 30.9 29.0 28.1 24.9 

24.0 23.9 23.3 22.6 22.4 19.8 
19.8 19.4 19.0 17.6 16.5 15.9 
13.3 12.3 12.0 12.0 

3 [1] 10.0805 10.0990 10.2757 10.6545 10.6883 11.0666 
11.2083 11.2558 11.8761 12.2103 

4 [15] 143 164 188 188 190 192 
206 209 213 216 220 227 
230 234 246 265 304 216" 

244* 
51 [4] 15 20 27 42 42 43 

44 46 64 65 
52 [4] sample 51 + 

65 68 68 71 74 75 
75 76 77 78 

61 [17] 540 700 800 900 980 1060 
1120 1180 1250 1340 1400 1500 

1500" 1500" 1500" 1500" 
62 [17] sample 61 + 

1500" 1500" 1500" 1500" 
7 [16] 17.88 28.92 33.00 41.52 42.12 45.60 

48.48 51.84 51.96 54.12 55.56 67.80 
68.64 68.64 68.88 84.12 93.12 98.64 
105.12 105.84 127.92 128.04 173.40 

81 [19] 93.4 98.7 116.6 1i7.8 132.7 136.6 
140.3 158.0 164.8 183.9 

82 [19] 152.7 172.0 172.5 173.3 193.0 204.7 
216.5 234.9 262.6 422.6 

9 [6] 0.265 0.269 0.297 0.315 0.3235 0.338 
0.379 0.379 0.392 0.402 0.412 0.416 
0.418 0.423 0.449 0.484 0.494 0.613 
0.654 0.740 

by algorithm MLEW with a precision e = 10 -6, and the corresponding vector of 
parameter values. Characteristics of the solution process are presented in Table III 
and are the following: ev~a,~ is the precision required, L - Lore is the precision 
obtained at the end of the solution process, tcpu is the computing time (user time) 
in seconds, iter is the number of iterations (parameter k in algorithm MLEW), 
discl is the number of intervals discarded by the first range reduction test of  
algorithm MLEW, disc2 is the number of intervals discarded by the monotonicity 
range reduction test. It appears that: (i) solutions for all samples are obtained in 
very moderate computing time; (ii) the number of iterations is also moderate; (iii) 
both range reduction tests are effective, the first one more than the second one on 
average, but their relative usefulness varies from sample to sample; (iv) increasing 
precision from e = 10 -1 to e -- 10 -6 moderately augments computation times 
and number of iterations (by not more than a factor of 4). 
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TABLE II. Optimal values and vectors for the test sample sets. 

393 

sample 

1 
2 
3 
4 
51 

bounds/value 

value 
value 
value 
value 
lower 
upper 

"~opt 
3.100000 
10.98784 
10.08050 
122.0259 
1.052543 
1.052635 

?)opt 
1.925000 
41.86285 
0.861010 
329418.6 
43749.96 
43751.49 

Wopt 
1.000000 
1.515528 
1.000000 
2.711477 
2.811973 
2.811981 

Lopt 
-6.619704 
-71.75690 
-8.503508 
-87.32424 
-41.54652 
-41.54652 

52 
61 
62 
7 

81 
82 
9 

value 
value 
value 
value 
value 
value 
value 

0.000000 
425.6769 
474.8136 
14.87591 
86.57383 
152.7000 
0.261144 

1604933. 
646838.5 
55280.13 
755.6003 
1001.132 
67.78000 
0.112443 

3.445769 
2.000065 
1.633255 
1.594299 
1.737348 
1.000000 
1.244496 

-87.74309 
-91.96168 
-96.30728 
-112.8502 
-46.8779 
-52.1627 
17.0683 

In the last column of Table III, passiv is the number of iterations required by 
a passive algorithm (grid search) to provide an e-optimal value for L**(u). This 
last parameter allows an indirect empirical comparison with Panchang and Gupta's 
method [21] modified to guarantee an e-optimal value. Indeed, consider a function 
f of class C 1 and assume one wants to evaluate its optimal value on an interval [u, ~] 
(this is the aim of Panchang and Gupta's method for function L**(u)). Denote by K 
the Lipschitz constant of f on the interval [u, ~], i.e., the best possible bound on the 
absolute value of its first order derivative on [u, ~]. Then the number of iterations 
required to guarantee an e-optimal value when applying a passive algorithm (or 
grid search) is [K(~ - u)]/e.  This is therefore the minimum number of iterations 
needed by Panchang and Gupta's algorithm to guarantee a precision of e. An itera- 
tion of Panchang and Gupta's algorithm requires an amount of computations in the 
same order of magnitude as an iteration of algorithm MLEW. Therefore the latter 
algorithm is much faster than the former. Indeed, for some test problems (samples 
3, 4 and 81) Panchang and Gupta's method requires an inordinate number of itera- 
tions to guarantee even a low precision of e = 10 -1 . The maximum log-likelihood 
function of sample 2 has been represented on Figure 4. 

Results obtained with the algorithm MLEW modified in order to obtain an 
e-optimal vector are described in Table IV. The characteristic parameters are the 
following: erector is the precision required on each parameter (here the same for 
each of the three parameters), A~, (resp. Av, A~,) is the relative precision obtained 
for parameter u (resp. v, w) when the algorithm stops. When the global optimum 
is reached at the local optimum vector characterized by u = minj=l,2 ..... N xj ,  
its value can be computed analytically, hence with A~, = A v = A~o = 0. The 
parameters tcpu, iter, discl and disc2 have the same meaning as in Table HI. When 
the required precision cannot be reached in a reasonable amount of computing time, 
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TABLE III. Performance of  Algorithm M L E W  @-optimal value). 

I sample I evatue t L - L o v e  [ t cpu  [ i t e r  [ discl  I disc2 [ passiv I 

1 le-01 5e-02 7 12 9 0 7e+04 
le-03 0 7 13 11 0 7eq-06 
Ie-06 0 7 13 11 0 7e-}-09 

2 le-01 8e-02 24 17 9 0 2e-1-05 
le-03 9e-04 42 30 23 0 2e-t-07 
le-06 8e-07 75 50 43 3 2e+lO 

3 le-01 5e-02 13 21 17 0 5e-1-22 
le-03 0 17 23 21 0 5e+24 
le-06 0 17 23 21 0 5e-{-27 

4 le-01 5e-02 30 25 12 6 l e + 1 9  
le-03 8e-04 48 38 25 6 l e+21  
le-06 8e-07 71 59 42 10 l e+24  

51 le-01 3e-01 7 12 4 1 9e+05 
le-03 7e-04 20 27 14 1 9e+07 
le-06 9e-07 45 61 50 4 9e-t-lO 

52 le-O1 0 15 13 1 10 7e-1-09 
le-03 0 15 13 1 10 7e-t-11 
le-06 0 15 13 1 10 7e+14 

61 le-Ol 9e-02 15 16 5 2 2e-bl l  
le-03 8e-04 35 32 21 3 2e-{-13 
le-06 9e-07 67 57 44 6 2e-1-16 

62 le-01 8e-02 19 16 6 2 9e-{-09 
le-03 8e-04 39 29 17 4 9e+11 
le-06 7e-07 69 48 32 7 9e+14 

7 le-01 9e-02 17 13 2 5 5e-1-07 
le-03 5e-04 30 20 6 9 5e+09 
le-06 4e-07 45 31 11 16 5e+12 

81 le-01 5e-02 16 24 14 0 3e-I-13 
Ie-03 7e-04 29 41 30 0 3e+15 
le-06 8e-07 50 70 60 0 3e-1-18 

82 le-O1 0 5 8 4 2 3e+07 
le-03 0 5 8 4 2 3e+09 
le-06 0 5 8 4 2 3e+12 

9 le-O1 6e-02 16 13 6 1 4e-1-06 
le-03 5e-04 31 23 11 6 4e+08 
le-06 4e-07 45 36 22 10 4e-t-ll 

L**(u) 

Fig. 4. 
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Maximum log-likelihood of sample 2 (w -- @ _> I). 
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TABLE IV. Performance of Algorithm MLEW (e-optimal vector). 

[samplele,r [Zx, I A, [ A,o [ tcpul i ter ld isc l ld isc2  t 
1 l e - 0 1  0 0 0 4 13 11 0 

l e - 0 3  0 0 0 4 13 11 0 
l e - 0 6  0 0 0 4 13 11 0 

2 l e - 0 1  8 e - 0 3  8 e - 0 2  2 e - 0 2  4 7  35  2 8  1 

l e - 0 3  6 e - 0 5  6 e - 0 4  l e - 0 4  88  62  52  4 
l e - 0 6  l e - O 7  l e - 0 6  2 e - 0 7  153  110  8 7  16 

3 l e - 0 1  0 0 0 14 23  21 0 
l e - 0 3  0 0 0 14 23  21 0 
l e - 0 6  0 0 0 14  2 3  21 0 

4 l e -O1  5 e - 0 3  9 e - 0 2  7 e - 0 3  55 4 7  3 2  9 
l e - 0 3  3 e - 0 5  6 e - 0 4  5 e - 0 5  95  78  5 8  13 
l e - 0 6  0 0 0 128  9 4  72  20  

51 l e - 0 1  5 e - 0 2  2e -02  l e - 0 3  42  65  55  1 

l e - 0 3  0 0 0 4 3  6 6  5 9  5 
l e - 0 6  0 0 0 43  6 6  5 9  5 

52  l e - 0 1  0 0 0 15 13 1 10 

l e - 0 3  0 0 0 15 13 1 10 
l e - 0 6  0 0 0 15 13  1 10 

61 l e - 0 1  6 e - 0 3  6e -02  6 e - 0 3  53  51 4 0  3 

l e - 0 3  8 e - 0 5  8 e - 0 4  7e -05  84  79 6 5  6 
l e - 0 6  5 e - 0 9  5e -08  4 e - 0 9  1 3 9  1 2 8  1 1 4  10 

6 2  l e -O1 4 e - 0 4  4e -02  6 e - 0 3  4 8  3 9  2 7  6 
l e - 0 3  3 e - 0 5  3 e - 0 4  5e -05  82  6 4  4 8  11 
l e - 0 6  0 0 0 122  6 7  51 14 

7 l e -O1  3 e - 0 2  9 e - 0 2  l e - 0 2  2 7  2 0  6 9 

l e - 0 3  l e - 0 4  5 e - 0 4  6 e - 0 5  51 35  13  18 
l e - 0 6  4 e - 0 7  7 e - 0 7  9 e - 0 8  95  62  17  3T 

81 l e -O1 3 e - 0 3  8 e - 0 2  9 e - 0 3  38  6 0  5 0  0 

l e - 0 3  3 e - 0 5  8 e - 0 4  9 e - 0 5  63  93  85  0 
l e - 0 6  0 0 0 83  1 0 6  99  5 

82  l e - 0 1  0 0 0 5 8 4 2 
l e - 0 3  0 0 0 5 8 4 2 
l e - 0 6  0 0 0 5 8 4 2 

9 l e - 0 1  8 e - 0 3  9 e - 0 2  4 e - 0 2  2 4  20  11 4 
l e - 0 3  6 e - 0 5  7 e - 0 4  3 e - 0 4  4 8  3 6  22  10 
l e - 0 6  0 0 0 6 3  45  31 12 

a limit of  1000 iterations has been imposed (this is the case for eveoto~ = le - 06 
for samples 4, 51, 62, 81 and 9). 

It appears that: (i) solutions for all problems are obtained in reasonable com- 
puting times; they vary greatly from problem to problem and sometimes augment 
sharply when high precision is required (this appears to be due to a fiat optimum); 
(ii) the number of iterations remains moderate for low precision and for some 
samples augments sharply when high precision is required; both reduction tests are 
effective, the monotonicity test being the most useful one for the more difficult to 
solve problems. 

Algorithm MLEW was also extended to the case of type I right censored samples 
(simple or progressive). Recall that, a sample (Zi)l<i< N is said to be simply right 
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censored (type I) if all observations higher than a given bound X0 are set to X0. 
The sample is said to be progressively right censored (type I) if all observations 
higher than a given bound X0 are set to different values X K  lower than the expected 
observed value XK. In both cases, only R of the values (xi) 1 <i<R, on a total number 
of N, are based on real observations. The N - R remaining ones are censored. 

Some minor changes in the log-likelihood allow us to handle the case of right 
censored sample (type I): 

R 
L c ( u , v , w ) = R l n (  w ) - I  E ( x j _ u ) ~ + ( w _ l )  E l n ( x j _ u ) .  

V 
j = l  

All results of Section 3 and the algorithm MLEW described in Section 4 were 
adapted and 2 problems based on right-censored (type I) observations (namely, 
problems 61 and 62) were solved. Computation times and other characteristics 
appear to be similar to those obtained in the case of uncensored samples. 

In conclusion, the use of global optimization methods, i.e., projection and outer 
approximations, allows the determination, with high precision and in very moderate 
computing time, of the globally optimal maximum log-likelihood parameter values 
for the three-parameter Weibull distribution, in both the uncensored and in the 
right-censored cases. 

Acknowledgements 

Research of the second and the third authors has been supported by AFOSR grant 
90-0008 to Rutgers University. Research of the second author has been supported by 
NSERC (Natural Sciences and Engineering Council of Canada) grant GP0105574. 
Research of the third author has been supported by NSERC grant GP0036426 
and FCAR (Fonds pour la Formation des Chercheurs et l'Aide/~ la Recherche) 
grants 89EQ4144, 92EQ1048 and 91NC0305. Research of the third author has 
also been supported by an NSF Professorship for Women in Science at Princeton 
University. We would also like to thank the referees for their helpful suggestions 
which improved the conciseness of some of the proofs. 

References 

1. Adatia, A. and Chan, L.K. (1985), Robust Estimators of the 3-Parameter Weibull Distribution, 
IEEE Transactions on Reliability 34(4), 347-351. 

2. Amaudies, J.M. and Fraysse, H. (1989), Cours de Mathdmatiques- 3: Compl~ments d'analyse, 
Dunod Universitf, Paris. 

3. Atkinson, M.D., Sack, J.-R., Santoro, N. and Strothotte, T. (1986), Min-Max Heaps and Gener- 
alized Priority Queues, Communications of the ACM 29(10), 996-1000. 

4. Bain, L.J. (1978), Statistical Analysis of Reliability and Life-Testing Models: Theory and Meth- 
ods, Statistics: Textbooks and Monographs 24, Marcel Dekker Inc., New York. 

5. Cohen, A.C., Whitten, B.J. and Ding, Y. (1984), Modified Moment Estimation for the Three- 
Parameter Weibull Distribution, Journal of Quality Technology 16(3), 159-167. 

6. Dumonceaux, R. and Ante, C.E. (1973), Discrimination between the Log-Normal and the 
Weibull Distribution, Technometrics 15, 923-926. 



THE THREE-PARAMETER WEIBULL DISTRIBUTION 397 

7. Geoffrion, A.M. (1972), Generalized Benders Decomposition, Journal of Optimization Theory 
and Applications 10(4), 237-260. 

8. Hansen, E, Jaumard, B. and Lu, S.-H. (1992), Global Optimization of Univariate Lipschitz 
Functions: I. Survey and Properties, Mathematical Programming 55, 251-272. 

9. Hansen, E, Jaumard, B. and Lu, S.-H. (1992), Global Optimization of Univariate Lipschitz 
Functions: II. New Algorithms and Computational Comparison, Mathematical Programming 
55, 273-292. 

10. Halter, H.L. (1971), Some Optimization Problems in Parameter Estimation, Optimizing Methods 
in Statistics, 33-62. 

11. Hasham, A. and Sack, J.-R. (1987), Bounds for Min-Max Heaps, B/T 27, 315-323. 
12. Horst, R. and Tuy, H. (1987), On the Convergence of Global Methods in Multiextremal Opti- 

mization, Journal of Optimization Theory and Applications 54, 253-271. 
13. Horst, R. andTuy, H. (1990), Global Optimization - Deterministic Approaches, Springer-Vedag, 

New York (2nd edition 1992). 
14. Kotz, S. and Johnson, N.L. (1973), Statistical Distributions: Survey of the Literature, Trends and 

Prospects, The American Statistician 27(1), 15-17. 
15. Lawless, J.E (1982), Statistical Models and Methods for Lifetime Data, New York, Wiley. 
16. Lieblein, J. and Zelen, M. (1956), Statistical Investigation of the Fatigue Life of Deep-Groove 

Ball Bearings, Journal of Research of the National Bureau of Standards 47, 273-316. 
17. Lochner, H.R., When and How to Use the Weibull Distribution, Research Report. 
18. McCool, J.I. (1970), Inference on Weibull Percentiles and Shape Parameters from Maximum 

Likelihood Estimates, IEEE Transactions on Reliability 19, 2-9. 
19. McCool, J.I. (1974), Inferential techniques for Weibull populatJons,AerospaceResearchLabo- 

ratories Report ARL TR 74-0180, Wright-Patterson AFB, Ohio. 
20. Moore, R.E. (1979), Methods and Applications of Interval Analysis, SIAM Studies in Applied 

Mathematics, Philadelphia. 
21. Panchang, V.G. and Gupta, R.C. (1989), On the Determination of Three-Parameter Weibull 

MLE's, Communications in Statistics and Computation 18(3), 1037-1057. 
22. Petrauskas, A. and Aagaard, EM. (1971), Extrapolation of Historical Storm Data for Estimating 

Design Wave Heights, Society of Petroleum Engineers Journal 11, 23-37. 
23. Piyavskii, S.A. (1967), 'An Algorithm for Finding the Absolute Minimum of a Function', Theory 

of Optimal Solutions 2, Kiev, IK AN USSR (in Russian), pp. 13-24. 
24. Piyavskii, S.A. (1972), An Algorithm for Finding the Absolute Extremum of a Function, USSR 

Computational Mathematics and Mathematical Physics 12, 57-67. 
25. Ratschek, H. and Rokne, J. (19 84 ), Computer Methods for the Range of Functions, Ellis Horwood 

Series Mathematics and its Applications, Wiley, New York. 
26. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis 

Horwood, Chichester. 
27. Rockette, H., Antle, C. and Klimko, L.A. (1974), Maximum Likelihood Estimation with the 

Weibu11 Model, Journal of the American Statistical Association 69(345), 246-249. 
28. Wingo, D.R. (1972), Maximum Likelihood Estimation of the Parameters of the Weibull Distri- 

bution by Modified Quasilinearization, IEEE Transactions on Reliability 21, 89-93. 
29. Wingo, D.R. (1973),SolutionoftheThree-ParameterWeibullEquationsby Constrained Modified 

Quasilinearization (Progressively Censored Samples), IEEE Transactions on Reliability 22(2), 
96-102. 

30. Zanakis, S.H. (1977), ComputationalExperience with Some Nonlinear Optimization Algorithms 
in Deriving Maximum Likelihood Estimates for the Three-Parameter Weibull Distribution, in 
Algorithmic Methods in Probability, M.E Neuts (ed.), TIMS Studies in Management Sciences, 
North-HoUand 7, 63-77. 

31. Zanakis, S.H. (1979), Extended Pattern Search with Transformations for the Three-Parameter 
Weibull MLE Problem, Management Science 25( 11 ), 1149-1161. 

32. Zanakis, S.H. and Kyparisis, J. (1986), A Review of Maximum Likelihood Estimation Methods 
for the Three-Parameter Weibull Distribution, JournalofStatistical Computation and Simulation 
25, 53-73. 


